Tag Archives: social networks

Now Published: The Geography of Happiness

Today we’re pleased to announce that our article “The Geography of Happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place” has been officially published by PLoS ONE.  We wanted to tell you about one key piece we’ve added to the paper and an unusual new Twitter account we’ve created.

After our three blog posts (which coincided with the release of the preprint), we received plenty of media attention, as well as some fantastic feedback from readers (thanks!). One very important question kept coming up: “How well does happiness agree with other measures of well-being?”, or more simply: “Why should we believe you?”

Well, we’re glad you asked.  For the final paper, we’ve added a US state-level comparison between our happiness measure and five other kinds of well-being indices:

  • the Behavioral Risk Factor Surveillance Survey (BRFSS)  for which people were asked to rate their life satisfaction on a scale of 1 to 4 (the BRFSS was explored in this Science paper on well-being from a few years back);
  • Gallup’s health survey-based well-being index;
  • the Peace Index, which aggregates various crime data;
  • the America’s Health Ranking, which aggregates health data; and
  • gun violence, specifically the number of shootings per 100,000 people.

In the figure below, we show a series of scatter plots comparing all pairs of well-being metrics  (happiness runs along the top row).  Each dot represents a US state, and the colors represent strength of correlation or agreement between measures, with blue meaning strong agreement, and red representing no (statistically significant) agreement. (We include the exact Spearman correlation coefficienr and p-value in each scatter plot.)


Scatter matrix showing comparison between different well-being metrics for all US states. The top row shows comparisons with happiness. Colors indicate the strength of correlation between pairs of metrics; shades of blue indicate increasingly significant correlation.

Looking at the top row, we can immediately see that happiness agrees with all measures except for the BRFSS. However, the BRFSS itself doesn’t agree with any other measure except for the Gallup well-being index.  The most striking departure was the BRFSS ranking Louisiana as the happiest state whereas our happiness measure placed it last.  There are a number of possible explanations for these disagreements: one is that the BRFSS data was taken between 2005 and 2008, while all other data is from 2011 only; another is that unlike the other measures, happiness is self-reported in the BRFSS. How would you answer if asked how happy you are? Do you expect that your answer is representative of the population you live in at large? There are certainly many different ways to define “happiness”, as a number of different readers have pointed out.

Of course, this is not to criticize the BRFSS (it remains a significant data source, and Oswald & Wu did fine work analyzing it in their Science paper), but merely to suggest that our word happiness score is measuring something different but perhaps complementary to traditional survey-based techniques. There certainly appears to be plenty of value to observing people “in the wild” via social network data, e.g. with the real-time instrument hedonometer.org.

Finally, to celebrate the publication of our article we created a Twitter feed, @geographyofhapp, dedicated to tweeting the happiest and saddest city every day, and we invite you to follow.  We’re hoping that this is the first research article with its own Twitter account, but perhaps not hoping that it represents the future of scientific publishing…

Leave a comment

Filed under geohappiness, mathematics, psychology, social phenomena

What makes a city happy?

Welcome back, onehappybird watchers! Wow, what a crazy week of coverage of our post about how happiness varies by city and state across the United States. Many, many people read, shared, and commented on the post, for which we are grateful. For the detailed explanation of the results, check out the full paper we recently submitted to PLoS ONE.

A number of readers wondered how variations in happiness relate to different underlying social and economic factors. To try to answer this question, we took data from the 2011 census (all helpfully available online on the Census Bureau’s American FactFinder website) and correlated it with our measure of happiness. Surprisingly, happiness generally decreases with the number of tweets per capita in a city (this doesn’t mean that tweeting more will make you less happy, it’s only a correlation):


Next, we grouped covarying demographic characteristics obtained from the census, and looked at how these clusters varied with happiness. For example, it might not surprise you that cities with a larger percentage of married couples also contain a larger percentage of children – this is what we mean by covarying demographics.  And you might or might not be surprised that more marriage is positively correlated with happiness.  There’s plenty of scatter but the connection is there:

Scatter plot of happiness vs. percentage of population married. Each dot represents one city, the rho and p-values reported are Spearman correlations.

Scatter plot of happiness vs. percentage of population married. Each dot represents one city, the rho and p-values reported are Spearman correlations.

We used an automated algorithm to bin the census data for us into eight groups and then compared the happiness of those groups, leading to the following figure:


Each point represents a characteristic from the census (for example, the % married/happiness plot above is now represented by one point in this figure), with the horizontal groupings representing covarying demographic characteristics. A point’s position on the vertical axis shows how that characteristic varies with happiness across all cities. A positive value means that happiness is higher in cities where that characteristic is higher, while a negative value means that happiness is lower in cities where that characteristic is higher. For example, the figure shows that as the percentage of married couples in a city increases, so does the average happiness of that city (no causality is implied).

Only two groupings (the colored dots on the far left and right) showed strong correlation (either positive or negative) with happiness. Looking at which characteristics make up these groups, it appears that the general story here is a socioeconomic one, and one that holds only at the extremes. With our peculiar Twitter-based lens, we see money statistically correlates with happiness, which is not quite as catchy as “money buys happiness” (see the debate over the Easterlin Paradox for more). You can delve into the data yourself – the correlations of all 432 characteristics of cities recorded by the census with happiness can be found here (page best viewed using Google Chrome).

A more interesting question might be how word usage varies with different demographics – to do this we correlated each word with each demographic characteristic across all 373 cities in our dataset, leading to a lot of data to sift through! (And you can too, by following the link in the above paragraph.) As an example, take a look at how the word “cafe” varies with the percentage of population with a college degree:


Each point in the figure represents one city, and broadly the trend is that the more “college-y” the city is, the more people talk about cafes online. (You can decide for yourself whether that’s surprising or not). The top 10 emotive words whose usage went up as percentage of population with a college degree went up turned out to be:

  1. cafe
  2. pub
  3. software
  4. yoga
  5. grill
  6. development
  7. emails
  8. wine
  9. art
  10. library

And the emotive words which went up as college degrees went down?

  1. me
  2. love
  3. my
  4. like
  5. hate
  6. tired
  7. sleep
  8. stupid
  9. bored
  10. you

We saw similar patterns of word use across many socioeconomic characteristics – emotive words and words about interpersonal relationships (‘me’ and ‘you’) at one end of the spectrum, and words about more complex social or intellectual themes at the other. Interestingly, we find more food-related words in this group as well.

Of course, all of this is open to interpretation. As many commenters last week pointed out, Twitter users (indeed, specifically those users who geotag their tweets using a mobile device) are a small, non-representative sample of the global population. Furthermore, our method is undeniably crude, and by breaking texts up into their constituent words ignores the context in which those words were used. That said, many of these results agree with our intuition (for example, many of the cities with low happiness scores also appeared on a list of America’s “most miserable cities” published late last week by Forbes), while some surprise us. There is certainly a lot to be learned by looking at what the data can tell us, and we encourage you to do so by exploring our website of supplementary data. Again, you can read the full technical details in our research paper here.

We’ll pick up on the theme of food again in our next post, which will focus on one important health factor relating to happiness – obesity.


Filed under mathematics, psychology, social phenomena

Where is the happiest city in the USA?

(Update: this work is now published at PLoS ONE)

Is Disneyland really the happiest place on Earth?* How happy is the city you live in? We have already seen how the hedonometer can be used to find the happiest street corner in New York City, now it’s time to let it loose on the entire United States.

We plotted over 10 million geotagged tweets from 2011 (all our results are in this paper, also on the arxiv), coloring each point by the average happiness of nearby words (detail on how we calculate happiness can be found in this article published in PLoS ONE):


As well as cities and the roads between them, we can make out many regions of higher and lower happiness, even within individual cities. As an example, check out this tweet-generated map of the city of Chicago:

Tweet-generated map of Chicago. Click to enlarge.

Tweet-generated map of Chicago. Click to enlarge.

Notice the striking contrast between the relatively happy Central/North Side of the city, and the sadder South Side. You can also find a few airports in this map, and if you look very closely you might even be able to pick out happy and sad terminals!

To quantify this variation in happiness a bit better, let’s look at the average happiness of each state:


Southern states tend to produce sadder words than those in northern New England or out west. Hawaii emerges as the happiest state and Louisiana as the saddest, due to relative differences in the frequencies of happy and sad words used in each state. Here at onehappybird, we characterize such differences by “word shifts”, which are basically word clouds for grown-ups. You can find examples of these, as well as the full list of the average happiness of each state, here (page best viewed using Google Chrome).

Zooming in further to the level of cities, we produced a similar list for 373 cities in the lower 48 states (you can find the full list, as well as maps and word shifts for each city, here). With a score of 6.25, we found the happiest city to be Napa, CA, due to a relative abundance of such happy words as “restaurant”, “wine”, and even “cheers”, along with a lack of profanity.


At the other end of the spectrum, we found the saddest city to be Beaumont, TX, with a score of 5.82. In general, cities in the south tended to be less happy than those in the north, with a major contributing factor being the relative abundance of profanity used in those cities.

We can go even further than this, and group cities by similarities in word usage. Each square in the heatmap below represents the similarity (Spearman correlation for you mathematically minded onehappybird watchers) between word distributions for the largest cities in the US. Red squares mean that the corresponding cities use words in a similar fashion, while blue means that those cities tend to use different types of words with respect to each other. The colors in the tree diagram at the top signify clusters of cities exhibiting similar word usage (below a certain threshold).

As we might expect for two cities that are geographically nearby, New Orleans and Baton Rouge are clumped together at the bottom right of the figure. On the other hand, New York and Seattle get clumped together as well, suggesting that similarities in language depend on more than just geographical proximity.


You can find more information about happiness and cities, as well as details on the methods used to produce these results, in our arxiv research article. In our next post, we’ll look at how these results are related to various underlying socioeconomic characteristics of cities. What makes a city happy or sad? Can we use Big Data to predict future changes in the demographics, health, or happiness of a city? How does happiness relate to the food you eat?

*By the way, to answer the question at the start of this post: According to this analysis Disneyland is not the happiest place on Earth; it isn’t even the happiest place in Southern California! See if you can find it in this tweet-generated map of LA! Or find your city here.


Filed under geohappiness, mathematics, psychology, social phenomena

If you’re happy and we know it … are your friends?

Do your friends influence your behavior?  Of course they do.  But it’s hard to actually measure their influence.  Social contagion is difficult to distinguish from homophily, the tendency we have to seek relationships with people like ourselves.

In response to the “happiness is contagious” phenomenon promoted by Nicholas Christakis and James Fowler, we here at onehappybird were wondering whether happy Twitter users were more likely to be connected to each other.  In other words, is happiness assortative in the Twitter social network?  (See related work here.)

In the image below, each circle represents a person in the social network of the center node.  We color nodes by the happiness of their tweets during a single week.  Pink colors are happier, gray colors are sadder, and nodes depicted with the color black did not meet our thresholding criteria (50 labMT words).

We established a friendship link between two users if they both replied directly to the other at least once during the week.

As users are added to this network, it quickly becomes difficult to tell whether pink nodes are disproportionately connected to each other, so instead we look at the correlation of their happiness scores.  The plot below shows the Spearman correlation coefficient of the happiness ranks for roughly 100,000 people, with blue squares and green diamonds indicating different word thresholds, and red circles representing the same network but with randomly shuffled happiness scores.

The larger correlation for friends indicates that happy users are likely to be connected to each other, as are sad users. Moving further away from one’s local social neighborhood to friends of friends, and friends of friends of friends, the strength of assortativity decreases as expected.

We also looked at the average happiness of users as a function of their number of friends (degree k). Happiness increases gradually with popularity, with large degree nodes demonstrating a larger average happiness than small degree nodes.

The most popular users used words such as “you,” “thanks,” and “lol” more frequently than small degree nodes, while the latter group used words such as “damn,” “hate,” and “tired” more frequently.  The transition appears to occur near Dunbar’s number (around 150), demonstrating a quantitative difference between personal and professional relationships.

Finally, here we show a visualization of the reciprocal-reply network for the day of October 28, 2008.

The size of the nodes is proportional to their degree, and colors indicate communities detected by Gephi’s community detection algorithm.

For more details, see the publication:

C. A. Bliss, I. M. Kloumann, K. D. Harris, C. M. Danforth, P. S. Dodds.  Twitter Reciprocal Reply Networks Exhibit Assortativity with Respect to Happiness. Journal of Computational Science. 2012. [pdf]

Abstract: Based on nearly 40 million message pairs posted to Twitter between September 2008 and February 2009, we construct and examine the revealed social network structure and dynamics over the time scales of days, weeks, and months. At the level of user behavior, we employ our recently developed hedonometric analysis methods to investigate patterns of sentiment expression. We find users’ average happiness scores to be positively and significantly correlated with those of users one, two, and three links away. We strengthen our analysis by proposing and using a null model to test the effect of network topology on the assortativity of happiness. We also find evidence that more well connected users write happier status updates, with a transition occurring around Dunbar’s number. More generally, our work provides evidence of a social sub-network structure within Twitter and raises several methodological points of interest with regard to social network reconstructions.


Filed under psychology, social phenomena