Tag Archives: data

Now Published: The Geography of Happiness

Today we’re pleased to announce that our article “The Geography of Happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place” has been officially published by PLoS ONE.  We wanted to tell you about one key piece we’ve added to the paper and an unusual new Twitter account we’ve created.

After our three blog posts (which coincided with the release of the preprint), we received plenty of media attention, as well as some fantastic feedback from readers (thanks!). One very important question kept coming up: “How well does happiness agree with other measures of well-being?”, or more simply: “Why should we believe you?”

Well, we’re glad you asked.  For the final paper, we’ve added a US state-level comparison between our happiness measure and five other kinds of well-being indices:

  • the Behavioral Risk Factor Surveillance Survey (BRFSS)  for which people were asked to rate their life satisfaction on a scale of 1 to 4 (the BRFSS was explored in this Science paper on well-being from a few years back);
  • Gallup’s health survey-based well-being index;
  • the Peace Index, which aggregates various crime data;
  • the America’s Health Ranking, which aggregates health data; and
  • gun violence, specifically the number of shootings per 100,000 people.

In the figure below, we show a series of scatter plots comparing all pairs of well-being metrics  (happiness runs along the top row).  Each dot represents a US state, and the colors represent strength of correlation or agreement between measures, with blue meaning strong agreement, and red representing no (statistically significant) agreement. (We include the exact Spearman correlation coefficienr and p-value in each scatter plot.)


Scatter matrix showing comparison between different well-being metrics for all US states. The top row shows comparisons with happiness. Colors indicate the strength of correlation between pairs of metrics; shades of blue indicate increasingly significant correlation.

Looking at the top row, we can immediately see that happiness agrees with all measures except for the BRFSS. However, the BRFSS itself doesn’t agree with any other measure except for the Gallup well-being index.  The most striking departure was the BRFSS ranking Louisiana as the happiest state whereas our happiness measure placed it last.  There are a number of possible explanations for these disagreements: one is that the BRFSS data was taken between 2005 and 2008, while all other data is from 2011 only; another is that unlike the other measures, happiness is self-reported in the BRFSS. How would you answer if asked how happy you are? Do you expect that your answer is representative of the population you live in at large? There are certainly many different ways to define “happiness”, as a number of different readers have pointed out.

Of course, this is not to criticize the BRFSS (it remains a significant data source, and Oswald & Wu did fine work analyzing it in their Science paper), but merely to suggest that our word happiness score is measuring something different but perhaps complementary to traditional survey-based techniques. There certainly appears to be plenty of value to observing people “in the wild” via social network data, e.g. with the real-time instrument hedonometer.org.

Finally, to celebrate the publication of our article we created a Twitter feed, @geographyofhapp, dedicated to tweeting the happiest and saddest city every day, and we invite you to follow.  We’re hoping that this is the first research article with its own Twitter account, but perhaps not hoping that it represents the future of scientific publishing…

Leave a comment

Filed under geohappiness, mathematics, psychology, social phenomena

The Twitter Diet

How does food (or talking about food online) relate to how happy you are? This is part 3 of our series on the Geography of Happiness. Previously we’ve looked at how happiness varies across the United States (as measured from word frequencies in geotagged tweets), and then at how different socioeconomic factors relate to variations in happiness. Now we focus in on one particular important health factor that might influence happiness, obesity.

We looked at how happiness varied with obesity across the 190 largest metropolitan statistical areas in the United States, giving us the following scatter plot:


Each point represents one city; for example the city with both(!) lowest obesity and greatest happiness in this set is Boulder, CO, located at the top left. The red line is a linear trend through the data (a line of best fit). Again, for the mathematically minded onehappybird watchers, we show the Spearman correlation coefficient and its corresponding p-value at the lower left. We do this to convince you that there is, in fact, a statistically significant downward trend in the blob of points in the picture! The big story here is of course that as obesity goes up, happiness goes down.

The natural next question to ask is: are there any words which could be indicators of obesity? What foods are people in obese cities eating, or talking about? To answer this question we correlated word frequencies with obesity, and searched for the most strongly-correlating food-related words. Below are two examples: on the left, “mcdonalds”, and on the right, “cafe”.


As obesity goes up, so does talk (at least on Twitter) about McDonalds, but talk about cafes follows the opposite trend! Does that mean that in order to lose weight we should spend more time sipping lattes in cafes? I wish.

Looking through the list of words, the top 5 food-related words that increase in frequency as obesity went up were:

  1. mcdonalds
  2. eat
  3. wings
  4. hungry
  5. heartburn

We were surprised by ‘hungry’! On the other hand, the top food-related words which were used more as obesity went down were:

  1. cafe
  2. sushi
  3. brewery
  4. restaurant
  5. bar

Perhaps unsurprisingly, these are words typically used by the high-socioeconomic group described in our previous post on city happiness, suggesting that better health correlates with higher socioeconomic status. You can find the complete list of how all words correlate with happiness here (page best viewed using Google Chrome). One surprising result was the observation that far more food-related words appeared in the low-obesity group than in the high-obesity group; in other words, food was being talked about more in the less-obese cities!

Summarizing: based on word usage, the Twitter diet consists of: breakfast at your favorite cafe, a delicious sushi lunch, dinner out at a fancy restaurant, with a nightcap at the best local bar or brewery. Thank you Twitter, don’t mind if I do.

All jokes aside, this sort of technique has great potential. Imagine being able to predict whether obesity was going to rise or fall in a city, or estimate changes in other demographics, just by analyzing the words people use online. Perhaps New York City Mayor Michael Bloomberg would find some early indicators of the success or failure of his war on soda!

And that’s all for this series of posts on the geography of happiness. More information on all of the results in this series can be found in our recently submitted arxiv paper. Please take a look at it and the accompanying online appendices, where you can look through all of the data yourself. As a special bonus feature, you can check out this video of me talking about this work at our recent TEDxUVM conference.  Thanks for reading!


Filed under mathematics, psychology, social phenomena

What makes a city happy?

Welcome back, onehappybird watchers! Wow, what a crazy week of coverage of our post about how happiness varies by city and state across the United States. Many, many people read, shared, and commented on the post, for which we are grateful. For the detailed explanation of the results, check out the full paper we recently submitted to PLoS ONE.

A number of readers wondered how variations in happiness relate to different underlying social and economic factors. To try to answer this question, we took data from the 2011 census (all helpfully available online on the Census Bureau’s American FactFinder website) and correlated it with our measure of happiness. Surprisingly, happiness generally decreases with the number of tweets per capita in a city (this doesn’t mean that tweeting more will make you less happy, it’s only a correlation):


Next, we grouped covarying demographic characteristics obtained from the census, and looked at how these clusters varied with happiness. For example, it might not surprise you that cities with a larger percentage of married couples also contain a larger percentage of children – this is what we mean by covarying demographics.  And you might or might not be surprised that more marriage is positively correlated with happiness.  There’s plenty of scatter but the connection is there:

Scatter plot of happiness vs. percentage of population married. Each dot represents one city, the rho and p-values reported are Spearman correlations.

Scatter plot of happiness vs. percentage of population married. Each dot represents one city, the rho and p-values reported are Spearman correlations.

We used an automated algorithm to bin the census data for us into eight groups and then compared the happiness of those groups, leading to the following figure:


Each point represents a characteristic from the census (for example, the % married/happiness plot above is now represented by one point in this figure), with the horizontal groupings representing covarying demographic characteristics. A point’s position on the vertical axis shows how that characteristic varies with happiness across all cities. A positive value means that happiness is higher in cities where that characteristic is higher, while a negative value means that happiness is lower in cities where that characteristic is higher. For example, the figure shows that as the percentage of married couples in a city increases, so does the average happiness of that city (no causality is implied).

Only two groupings (the colored dots on the far left and right) showed strong correlation (either positive or negative) with happiness. Looking at which characteristics make up these groups, it appears that the general story here is a socioeconomic one, and one that holds only at the extremes. With our peculiar Twitter-based lens, we see money statistically correlates with happiness, which is not quite as catchy as “money buys happiness” (see the debate over the Easterlin Paradox for more). You can delve into the data yourself – the correlations of all 432 characteristics of cities recorded by the census with happiness can be found here (page best viewed using Google Chrome).

A more interesting question might be how word usage varies with different demographics – to do this we correlated each word with each demographic characteristic across all 373 cities in our dataset, leading to a lot of data to sift through! (And you can too, by following the link in the above paragraph.) As an example, take a look at how the word “cafe” varies with the percentage of population with a college degree:


Each point in the figure represents one city, and broadly the trend is that the more “college-y” the city is, the more people talk about cafes online. (You can decide for yourself whether that’s surprising or not). The top 10 emotive words whose usage went up as percentage of population with a college degree went up turned out to be:

  1. cafe
  2. pub
  3. software
  4. yoga
  5. grill
  6. development
  7. emails
  8. wine
  9. art
  10. library

And the emotive words which went up as college degrees went down?

  1. me
  2. love
  3. my
  4. like
  5. hate
  6. tired
  7. sleep
  8. stupid
  9. bored
  10. you

We saw similar patterns of word use across many socioeconomic characteristics – emotive words and words about interpersonal relationships (‘me’ and ‘you’) at one end of the spectrum, and words about more complex social or intellectual themes at the other. Interestingly, we find more food-related words in this group as well.

Of course, all of this is open to interpretation. As many commenters last week pointed out, Twitter users (indeed, specifically those users who geotag their tweets using a mobile device) are a small, non-representative sample of the global population. Furthermore, our method is undeniably crude, and by breaking texts up into their constituent words ignores the context in which those words were used. That said, many of these results agree with our intuition (for example, many of the cities with low happiness scores also appeared on a list of America’s “most miserable cities” published late last week by Forbes), while some surprise us. There is certainly a lot to be learned by looking at what the data can tell us, and we encourage you to do so by exploring our website of supplementary data. Again, you can read the full technical details in our research paper here.

We’ll pick up on the theme of food again in our next post, which will focus on one important health factor relating to happiness – obesity.


Filed under mathematics, psychology, social phenomena

Where is the happiest city in the USA?

(Update: this work is now published at PLoS ONE)

Is Disneyland really the happiest place on Earth?* How happy is the city you live in? We have already seen how the hedonometer can be used to find the happiest street corner in New York City, now it’s time to let it loose on the entire United States.

We plotted over 10 million geotagged tweets from 2011 (all our results are in this paper, also on the arxiv), coloring each point by the average happiness of nearby words (detail on how we calculate happiness can be found in this article published in PLoS ONE):


As well as cities and the roads between them, we can make out many regions of higher and lower happiness, even within individual cities. As an example, check out this tweet-generated map of the city of Chicago:

Tweet-generated map of Chicago. Click to enlarge.

Tweet-generated map of Chicago. Click to enlarge.

Notice the striking contrast between the relatively happy Central/North Side of the city, and the sadder South Side. You can also find a few airports in this map, and if you look very closely you might even be able to pick out happy and sad terminals!

To quantify this variation in happiness a bit better, let’s look at the average happiness of each state:


Southern states tend to produce sadder words than those in northern New England or out west. Hawaii emerges as the happiest state and Louisiana as the saddest, due to relative differences in the frequencies of happy and sad words used in each state. Here at onehappybird, we characterize such differences by “word shifts”, which are basically word clouds for grown-ups. You can find examples of these, as well as the full list of the average happiness of each state, here (page best viewed using Google Chrome).

Zooming in further to the level of cities, we produced a similar list for 373 cities in the lower 48 states (you can find the full list, as well as maps and word shifts for each city, here). With a score of 6.25, we found the happiest city to be Napa, CA, due to a relative abundance of such happy words as “restaurant”, “wine”, and even “cheers”, along with a lack of profanity.


At the other end of the spectrum, we found the saddest city to be Beaumont, TX, with a score of 5.82. In general, cities in the south tended to be less happy than those in the north, with a major contributing factor being the relative abundance of profanity used in those cities.

We can go even further than this, and group cities by similarities in word usage. Each square in the heatmap below represents the similarity (Spearman correlation for you mathematically minded onehappybird watchers) between word distributions for the largest cities in the US. Red squares mean that the corresponding cities use words in a similar fashion, while blue means that those cities tend to use different types of words with respect to each other. The colors in the tree diagram at the top signify clusters of cities exhibiting similar word usage (below a certain threshold).

As we might expect for two cities that are geographically nearby, New Orleans and Baton Rouge are clumped together at the bottom right of the figure. On the other hand, New York and Seattle get clumped together as well, suggesting that similarities in language depend on more than just geographical proximity.


You can find more information about happiness and cities, as well as details on the methods used to produce these results, in our arxiv research article. In our next post, we’ll look at how these results are related to various underlying socioeconomic characteristics of cities. What makes a city happy or sad? Can we use Big Data to predict future changes in the demographics, health, or happiness of a city? How does happiness relate to the food you eat?

*By the way, to answer the question at the start of this post: According to this analysis Disneyland is not the happiest place on Earth; it isn’t even the happiest place in Southern California! See if you can find it in this tweet-generated map of LA! Or find your city here.


Filed under geohappiness, mathematics, psychology, social phenomena

The Daily Unraveling of the Human Mind

Each morning we find ourselves in wide flung arms of drowsy possibilites. Cradled by the warm embrace of our beds, we begin our day, rebooted and rejuvenated. Having not eaten for a full eight hours, we can enjoy a guilt free breakfast, setting a blissful tone for the day.


Hourly frequency of meal references on twitter.
See figure 1 page 3 of our paper for details.

Last night’s dreams of victory and triumph bolster our delusions of adequacy, preparing us to surmount any of life’s challenges. But the moment we step outside, reality commences its slow and insidious descent. Its weight, compressing our spine, crushing our dreams, alters the course of the day completely.  The soul crushing litany of work, interacting with people, and generally living our lives takes its toll. As our sanity unravels, apathy takes root. The profane becomes our standard of expression. In the throes of despair, we swear just to feel something. We swear increasingly as we realize the inevitability of repeating this all again tomorrow.

F***, that’s a terrifying thought.

This ephemeral pattern is reflected in our tweets, our spontaneous burst of being. Below, we see our happiness peaks during the early hours of the day, and degrades as the hours progress (yellow circles). The proportion of profanity in our tweets, however, follows a reverse cycle. Profanity appears in a smaller percent of tweets at the start of each day, and increases gradually as time wears on.

Daily Unraveling

Daily Unraveling
See figure 10 page 15 of our paper for details.

Remarkably, the relative frequency of these five expressions of frustration (a******,  b****, s***, f***, m***********) are quite similar.

Well done, humans.

To avoid experiencing the daily unraveling, we recommend eating organic, local dark chocolate all day long.


Filed under mathematics, psychology, social phenomena

Tweets and happiness.

Quotidian Twitter verbiage

Relative use of food-based keywords in tweets over the course of a day.

Below is our first treatment of oodles of Twitter data, searching for basic patterns, happiness, and information levels. On the left, we have strong evidence that people really do tweet about what’s going on in their lives right now, at least food-wise.

The paper: Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter


Peter Sheridan Dodds, Kameron Decker Harris, Isabel M. Kloumann, Catherine A. Bliss, Christopher M. Danforth


Individual happiness is a fundamental societal metric. Normally measured through self-report, happiness has often been indirectly characterized and overshadowed by more readily quantifiable economic indicators, such as gross domestic product. Here, we use a real-time, remote-sensing, non-invasive, text-based approach—a kind of hedonometer—to uncover collective dynamical patterns of happiness levels expressed by over 50 million users in the online, global social network Twitter. With a data set comprising nearly 2.8 billion expressions involving more than 28 billion words, we explore temporal variations in happiness, as well as information levels, over time scales of hours, days, and months. Among many observations, we find a steady global happiness level, evidence of universal weekly and daily patterns of happiness and information, and that happiness and information levels are generally uncorrelated. We also extract and analyse a collection of happiness and information trends based on keywords, showing them to be both sensible and informative, and in effect generating opinion polls without asking questions. Finally, we develop and employ a graphical method that reveals how individual words contribute to changes in average happiness between any two texts.


Filed under social phenomena